
16-Bit Serial Communications
by John Chaytor

This article describes asynchro-
nous serial communications in

the 16-bit Windows environment.
We will briefly cover the nuts and
bolts at the hardware level, to un-
derstand the terminology used in
the Windows API, then I’ll discuss
in detail how an application opens,
configures, initialises, communi-
cates with and closes a serial de-
vice. Although the serial port can
be connected to various devices
(mouse, joystick, printer etc) we’ll
assume that we are communicating
with a modem: ie two way, full du-
plex data transfer. By the end of the
article we will have created a class
to encapsulate the Comm device and
a simple demo application.

32-bit comms under Windows is
quite a bit different, but don’t
worry: I have promised the Editor
I’ll write a follow-up article cover-
ing 32-bit issues, and hopefully the
ZMODEM protocol too! The basic
hardware discussion applies to
both 16-bit and 32-bit, of course.

System View
Figure 1 illustrates the relationship
between an application and the
underlying hardware. As you can
see, application code interfaces to
serial devices via the various
Windows APIs. In turn, Windows
relies on a device driver (by default
COMM.DRV) which performs all
the low-level work needed to talk to
the hardware. The serial hardware
is a special chip called a UART (Uni-
versal Asynchronous Receiver/
Transmitter) which is responsible
for communicating with the out-
side world via the 9 pin cable
plugged into your PC’s COM port.

Hardware View
Table 1 details the names used for
the nine lines (pins) in serial com-
munications. When a cable is con-
nected between a serial port and a
modem the data flow for each line
is in a single direction. Figure 2
shows the direction of data flow for
each line. At any time each line can

be high (on) or low (off). As we are
describing communications with a
modem, these lines can be broken
down into the following categories:
➣ Device control. DTR and DSR

are used in controlling and
monitoring the connection be-
tween the PC and modem. The
modem sets DSR high when it is
powered on and has initialised.
DTR is set high when the serial
port on the PC has been initial-
ised. It must remain high as long
as the modem connection is re-
quired. Most modems will hang
up the connection if DTR is
dropped low. We will use this to
implement a hang-up method.

➣ Flow control. CTS and RTS are
used for hardware flow control.

➣ Status information. RI and CD
(also called DCD or RLSD) are
status lines. RI is high whenever
the modem detects an incoming
ringing tone. CD is high when
the modem is connected to
another modem.

➣ Data transfer. RXD and TXD
are the lines which carry the
data between the UART chip
and the modem. The TXD
(transmit line) on the local PC is
logically connected to the RXD
(receive line) of the remote PC
and vice versa. As there is only
one line for each direction, the
data needs to be sent 1 bit at a
time – hence the name serial.
The UART chip converts the
data between the internal PC
representation (eg a byte) and
an external format (bit stream)

required for data transmission.
How it does this depends on the
configuration options specified
for the Comm device.

GND is of no interest to us: it’s all
to do with voltage levels!

Data Conversion
The data passed over a serial link
needs to be converted from the in-
ternal PC format to a stream of bits.
The UART chip does this conver-
sion. Figure 3 illustrates the bit
stream generated if $6D were writ-
ten to the UART output buffer. If
you look closely at the figure you
will see that there are more bits
leaving the UART chip than are
placed in its output buffer.

This is because extra bits
(shown in bold) need to be trans-
mitted along with the raw data for

➤ Figure 1

➤ Figure 2

Pin Acronym Name

1 CD Carrier detect

2 RXD Received data

3 TXD Transmitted data

4 DTR Data terminal ready

5 GND Ground

6 DSR Data set ready

7 RTS Request to send

8 CTS Clear to send

9 RI Ring indicator

➤ Table 1

38 The Delphi Magazine Issue 19



both ends of the communication
link to interpret and validate the
data correctly. These additional
bits include synchronisation and
parity bits. For each unit of data
which is passed to the UART, up
to 4 bits may be added.

This bit stream (containing 11
bits in the figure) is called a Serial
Data Unit (SDU) and is the smallest
data quantity processed by the se-
rial interface. When the driver
passes data to the UART chip it will
generate an SDU of this format and
send it out on the serial cable. If, for
example, only a single character
were sent to the UART it would
send the SDU, then there would be
a gap until the next character is
sent. This is why serial communi-
cation is more accurately called
asynchronous serial communica-
tion. Data can be sent or received
at any time.

Due to the asynchronous nature
of the data transmission, there
needs to be a mechanism for the
receiving end of the communica-
tion link to know when the data
starts and ends. This is where the
start and stop bits are used: they
encapsulate every data unit trans-
mitted. The start bit is always a
single zero and is the first bit sent.
Immediately after the start bit the
UART sends the data bits, which

were placed in its input buffer. The
UART can be configured to process
data units between 5 and 8 bits in
length. The data bits may be fol-
lowed by an optional parity bit. The
value of the parity bit is generated
by the UART chip and depends on
the configuration option specified.
Table 2 lists the possible options.
Parity bits are of limited use. They
can only accurately detect errors if
there are errors in an odd number
of data bits. If 2,4,6 or 8 data bits are
in error, they cancel each other out
and the parity bit suggests that the
data was valid. As the majority of
modems now use block CRC error
checking and recovery you will
often see that parity is not used for
dial up services. After the parity
bits have been sent the UART
sends the stop bit(s) to indicate
the end of the SDU. The end of the
SDU is made up of 1, 1.5 or 2 stop
bits (which are always ‘1’ – high).

Whenever the UART has no data
to send it keeps the TXD line high.
If you refer to Figure 3 you will see
that the line is high on both sides
of the SDU. This fact is used by the
receiving UART to detect when the
next SDU has arrived. When it de-
tects that its RXD line has dropped
it assumes that an SDU start bit is
being received and starts collect-
ing the bits as defined by the cur-

rent configuration. When the UART
has collected the bits it processes
the SDU and will place the data in
its received buffer (assuming no
errors were detected). At this point
the UART will wait until another
start bit is detected and start the
process again.

You should be able to see from
this brief hardware overview why
it is essential for both ends of the
communication link to specify the
same configuration options for the
data bits, parity and stop bits. If
they are not the same the receiving
UART will mis-interpret the bit
pattern and hardware errors will
be generated.

Hardware Detected Errors
The following errors are automat-
ically detected by the hardware.
See the later section Detecting
Errors/Events to discover how an
application can be informed when
these errors occur.
➣ Framing error. The UART has

detected an invalid stop bit.
After reading the SDU start, data
and optional parity bits it was
expecting to find the ‘1’ stop
bit(s), but instead it found a ‘0’.

➣ Overrun error. The UART has
received an SDU but its output
buffer is full (the old style chips
only have a 1 byte register, the
newer chips have a 16 byte FIFO
buffer). This happens if the
driver has not processed the
current received buffer, prob-
ably due to the application not
reading data from the driver’s
buffers fast enough when flow
control is not being used.

➣ Break error. The UART has
detected that the RXD input line
has been low for a longer time
than it normally takes to receive
an SDU. Even if it were receiving
a byte of X‘00’ with even parity
it should receive a stop bit in
this time (and remember, the
remote UART holds the line
high if it is not sending data).
This could indicate that the con-
nection is broken or the trans-
mitter has sent a break signal,
which drops the TXD line.

➣ Parity error. After the SDU has
been received successfully (ie
none of the previous errors

➤ Figure 3

Parity Meaning

None No parity bit is passed in the SDU

Even Parity bit is set so the number of 1s in the data bits and parity bit is even

Odd Parity bit is set so the number of 1s in the data bits and parity bit is odd

Mark Parity bit is always set to 1 These options can’t detect if there have been errors in
the data bits during transmission and are rarely usedSpace Parity bit is always set to 0

➤ Table 2: Parity settings

March 1997 The Delphi Magazine 39



were encountered), the UART
performs any required parity
checking. If the parity bit is in-
correct this error will be gener-
ated. A configuration option
allows you to replace these
characters with the supplied
character.

Baud Rate
Unlike data bits, parity and stop
bits, the Baud rates for the commu-
nication devices at each end of a
link can be different when using
modems. The Baud rate you use to
configure the communication de-
vices determines the speed of data
transfer between your PC and the
attached modem (the modem auto-
matically detects the values).
When the two modems communi-
cate with each other they negotiate
a baud rate which can be sup-
ported by both ends (along with
other parameters such as error
recovery, compression etc).

If you connect two PCs using a
NULL modem cable (which en-
sures that the pins at each end are
connected correctly) you will need
to set the baud rate to the same
value at both ends.

Flow Control
Flow control is a mechanism used
to ensure that the receiver’s buff-
ers do not overflow during data
transfer leading to data loss. The
basic mechanism behind flow con-
trol is that each receiver indicates
to the transmitter (via an agreed on
protocol) that it should stop trans-
mitting data when its input buffer
is in danger of overflowing. Once
the receiver has processed some of
the data in the buffer it then lets the
transmitter know that it is now OK
to send data. There are three
options for flow control:
➣ None. Obviously, with no flow

control you may lose data.
➣ Software. Special characters,

XON and XOFF, are reserved to
have special meaning. When a
receiver detects that its buffers
are nearly full it sends an XOFF
character to the transmitter to
indicate that it should stop
sending data. Once the receiver
has cleared the backlog it sends
an XON character to indicate

that the transmitter can now re-
sume. XON/XOFF cannot be
used when transferring binary
data as the data may contain an
XON/XOFF character, which
would trigger a false flow con-
trol event. Also, it is only reli-
able at low transfer rates.
Finally, there is a danger that
one of the XON/XOFF charac-
ters could be corrupted during
transmission and the transmit-
ter will miss an important flow
control instruction.

➣ Hardware. By far the best form
of flow control is hardware flow
control. In this, either the
DTR/DSR or CTS/RTS pair of
lines is used. For modems,
CTS/RTS is used (the DSR/DTR
lines are used for device con-
trol). When the transmitter
needs to send data, it sets the
RTS (request to send) line high.
It then checks the CTS (clear to
send) line. If this line is high it is
OK to send data, if this line is
low the receiver cannot accept
the data: the transmitter must
wait for the CTS line to go high.

Although we need to be aware of
flow control, the driver software
implements it on our behalf. We

only need to configure the device
for the chosen mechanism.

Driver Configuration
Although I’m not going to cover
this in detail you should be aware
of the configuration options in the
Windows control panel for the
communication ports. The driver
uses two parameters, Base I/O
address and IRQ number, to know
how to talk to the hardware. The
Base I/O address refers to the ad-
dress of the UART Port 0 in mem-
ory. This allows the driver to read
and write to the ports on the UART
chip. The IRQ number will be used
to inform the driver when commu-
nication events occur. These two
values need to be unique for the
port to avoid conflicts with other
hardware devices.

Software View:
The TCommDevice Class
Now that we have a basic under-
standing of the terminology used in
serial communications we will step
through opening, configuring, ini-
tialising, communicating with and
closing a communication device.
The code examples shown in the
listings are simplified examples of

API Description

BuildCommDCB Builds a device control block from a device-definition string

ClearCommBreak Restores character transmission after SetCommBreak

CloseComm Closes a communications device

EnableCommNotification Enables or disables posting of notification messages

EscapeCommFunction Causes the communications device to carry out the
extended function

FlushComm Flushes the specified transmission or receiving queue

GetCommError Retrieves the most recent error value and current status for
the device

GetCommEventMask Retrieves and then clears the event word for the
communication device

GetCommState Retrieves the device control block

OpenComm Opens a communications device

ReadComm Reads characters from a communications device

SetCommBreak Suspends character transmission (TXD will go low)

SetCommEventMask Enables events for the communication device

SetCommState Sets the communications-device state using the device
control block

TransmitCommChar Places a character at the head of the transmission queue

UngetCommChar Puts a character back in the receiving queue

WriteComm Writes characters to a communications device

➤ Table 3: Windows serial comms APIs

40 The Delphi Magazine Issue 19



the routines provided on the disk,
to allow us to concentrate on the
important areas.

Table 3 details the relevant APIs
used in serial communications. Of

type
  TCommDevice = class
    private
      { ....see the disk for details }
    public
      Constructor Create;
      Destructor Destroy; override;
      { Methods }
      procedure BreakTransmission;  { ** rarely used ** }
      procedure Close;
      function  Dial(const Number: string): Boolean;
      function  FlushInput: Boolean;
      function  FlushOutput: Boolean;
      procedure HangUp;
      procedure Open(Port: Integer);
      procedure ResumeTransmission; { ** rarely used ** }
      function  WriteBlock(Buff: PChar; BuffLen: Integer): Boolean;
      function  WriteLn(const S: string): Boolean;
      { Properties which affect device operating parameters (ie affect the DCB) }
      property BaudRate: Word read FDCB.BaudRate write SetBaudRate;
      property CtsTimeOut: Word read FCtsTimeout write FCtsTimeout;
      property DataBits: Byte read FDCB.ByteSize write SetDataBits;
      property DsrTimeOut: Word read FDsrTimeout write FDsrTimeout;
      property FlowControl: TFlowControl read FFlowControl write FFlowControl;
      property Parity: Byte read FDCB.Parity write SetParity;
      property ParityCheck: Boolean read FParityCheck write FParityCheck;
      property ParityDoReplaceChar: Boolean
        read FParityDoReplaceChar write FParityDoReplaceChar;
      property ParityReplacementChar: Char
        read FParityReplacementChar write FParityReplacementChar;
      property ReceiveQueueSize: Integer
        read FReceiveQueueSize write SetReceiveQueueSize;
      property StopBits: Byte read FDCB.StopBits write SetStopBits;
      property TransmitQueueSize: Integer
        read FTransmitQueueSize write SetTransmitQueueSize;
      property XFlowOffLimit: Word read FXFlowOffLimit write FXFlowOffLimit;
      property XFlowOnLimit: Word read FXFlowOnLimit write FXFlowOnLimit;
      property XOffChar: Char read FXOffChar write FXOffChar;
      property XOnChar: Char read FXOnChar write FXOnChar;
      { Read only properties which show status information }
      property CDHigh: Boolean read GetCDHigh;
      property CTSHigh: Boolean read GetCTSHigh;
      property DeviceOpen: Boolean read GetDeviceOpen;
      property DSRHigh: Boolean read GetDSRHigh;
      property InputByteCount: Integer read GetInputByteCount;
      property OutputByteCount: Integer read GetOutpuByteCount;
      property RIHigh: Boolean read GetRIHigh;
      { Other properties }
      property InitString: string read FInitString write FinitString;
      { Events }
      property OnBreak: TOnErrEvent read FOnBreak write FOnBreak;
      property OnCDChange: TOnLineStatusChange read FOnCDChange write FOnCDChange;
      property OnCTSChange: TOnLineStatusChange
        read FOnCTSChange write FOnCTSChange;
      property OnData: TOnDataEvent read FOnData write FOnData;
      property OnDSRChange: TOnLineStatusChange
        read FOnDSRChange write FOnDSRChange;
      property OnOverrunErr: TOnErrEvent read FOnOverrunErr write FOnOverrunErr;
      property OnParityErr: TOnErrEvent read FOnParityErr write FOnParityErr;
      property OnFrameErr: TOnErrEvent read FOnFrameErr write FOnFrameErr;
  end;

Constructor TCommDevice.Create;
begin
  FDeviceId := DeviceNotOpen;
  FReceiveQueueSize := DefaultInBuffer;
  FTransmitQueueSize := DefaultOutBuffer;
  FParity := ByteNotSet;
  FStopBits := ByteNotSet;
  FCtsTimeOut := DefaultXflowTimeout;
  FDsrTimeOut := DefaultXflowTimeout;
  FXonChar := #17;
  FXoffChar := #19;
  FXFlowOnLimit := 32;
  FXFlowOffLimit := 512;
  FParityCheck := True;
  FParityDoReplaceChar := True;
  FParityReplacementChar := ’*’;
  FInitString := ’ATZ’;
  FEvents := EV_RXCHAR or EV_TXEMPTY or EV_ERR or EV_BREAK
    or EV_CTS or EV_DSR or EV_RLSD;
  FReadBuffer := MemAlloc(ReadBufferSize);
  if FReadBuffer = nil then
    Raise Exception.Create(’MemAlloc failed creating internal buffer’);
  FTempOutBuffer := MemAlloc(OutBufferSize);
  if FTempOutBuffer = nil then
    Raise Exception.Create(’MemAlloc failed creating temporary output buffer’);
end;

➤ Below: Listing 2➤ Above: Listing 1

those listed, BuildCommDCB, Trans-
mitCommChar and UngetCommchar are
not used in the TCommDevice class.

I’ve developed the class
TCommDevice to show how to access

the serial ports on your PC. The
class is not ‘industrial strength’,
but demonstrates the principles.

Listing 1 shows the public
section of the declarations for
TCommDevice. As you can see, most
of this consists of property decla-
rations, which I have grouped into
three types. Device operating pa-
rameters have a direct correlation
with values understood by the
Windows API and affect the device
configuration. Status information
properties are read only and all call
property access routines to re-
trieve this information. Of these, all
but DeviceOpen read data specific to
the device. The DeviceOpen prop-
erty access routine references a
field stored within the object itself.
Finally, we have the InitString
property for the modem.

TCommDevice is created by using
TCommDevice.Create (Listing 2),
which initialises most of the prop-
erty fields to default values and al-
locates memory for its read and
write buffers. You can see that
some of the property fields (eg
FParity) are set to a constant called
ByteNotSet ($FF). This is used
within the class to determine if you
have set the relevant property. If
not, the device default is used.

One important line to note is the
assignment of the field FEvents,
which will contain the flags of all
the events we are interested in. See
the later section Detecting Errors/
Events to see how this is used.

The device is not opened during
the creation of the object, so you
can change the operating parame-
ters before opening. To allow this
capability, the relevant property
access routines store the informa-
tion in fields within the object.
These are then referenced when
the device needs to be configured.
See the later section Configuring
The Device.

Opening A Device
Listing 3 shows how a communica-
tion device is opened by the
TCommDevice.Open method. The port
number is passed as a parameter:
Windows supports values between
1 and 9 although 1 to 4 is more
common. This method calls the
OpenComm API function, which has

March 1997 The Delphi Magazine 41



three parameters. The port name
(eg ’COM2’) and the input and
output queue sizes to be allocated
by the device driver. It returns a
device ID that needs to be passed
to the other APIs to identify the
device. If the value returned is a
positive value (including 0) then
the device has been opened suc-
cessfully and you have exclusive
access to the device. This ID is
stored in FDeviceId. If the value re-
turned is negative there was an
error opening the device. You can
see from the listing that Windows
provides constants for the com-
mon causes of error. If the device
could not be opened an exception
is raised to indicate the cause of
the error. If the device was opened
OK the Open method configures and
initialises the device.

Configuring The Device
After the Open method has success-
fully opened the device it calls the
private ConfigureDevice method to

change the operating parameters
for the device. When the device is
first opened the driver will assign
default values for all the parame-
ters. To change these we call the
GetCommState and SetCommState
APIs. GetCommState is passed the

DeviceId (returned from the Open-
Comm function in the Open method)
along with a reference to a DCB
(device control block) structure.
This function fills the DCB struc-
ture with the current values for the
device. We can then amend the

procedure TCommDevice.Open(Port: Integer);
var CommDeviceName: array[0..4] of char;
    TmpID; Integer;
begin
   TmpID :=
     OpenComm(StrPCopy(CommDeviceName, Format(’COM%D’,[Port])), 2048, 1024);
   case FDeviceId of
     0..32767:
       begin
         FDeviceID := TmpID;
         ConfigureDevice;
         InitialiseDevice;
       end
     IE_BADID:    Raise Exception.Create(
       ’The device identifier is invalid or unsupported.’);
     IE_BAUDRATE: Raise Exception.Create(
       ’The device’’s baud rate is unsupported.’);
     IE_BYTESIZE: Raise Exception.Create(
       ’The specified byte size is invalid.’);
     IE_DEFAULT:  Raise Exception.Create(
       ’The default parameters are in error.’);
     IE_HARDWARE: Raise Exception.Create(
       ’The hardware is not available (is locked by another device).’);
     IE_MEMORY:   Raise Exception.Create(
       ’The function cannot allocate the queues.’);
     IE_NOPEN:    Raise Exception.Create(’The device is not open.’);
     IE_OPEN:     Raise Exception.Create(’The device is already open.’);
    else
       Raise Exception.CreateFmt(’OpenComm failed with error %d.’,[FDeviceId]);
    end;
end;

➤ Listing 3

type
  PDCB = ^TDCB;
  TDCB = record
    Id: Byte; { Internal Device ID as returned by OpenComm  }
    BaudRate: Word;          { Baud rate at which running }
    ByteSize: Byte;          { Number of bits/SDU, 4-8 }
    Parity: Byte;            { 0-4=None,Odd,Even,Mark,Space }
    StopBits: Byte;          {  0,1,2 = 1, 1.5, 2 }
    RlsTimeout: Word;        { Timeout for RLSD to be set }
    CtsTimeout: Word;        { Timeout for CTS to be set  }
    DsrTimeout: Word;        { Timeout for DSR to be set  }
    Flags: Word;        { See below }
    XonChar: char;           { Tx and Rx X-ON character   }
    XoffChar: char;          { Tx and Rx X-OFF character  }
    XonLim: Word;            { Transmit X-ON threshold    }
    XoffLim: Word;           { Transmit X-OFF threshold   }
    PeChar: char;         { Parity error replacement char }
    EofChar: char;           { End of Input character     }
    EvtChar: char;           { Received Event character   }
    TxDelay: Word; { Time between chars,not used in Windows }
  end;
const
  {  Flag definitions for the TDCB.Flags field : }
  dcb_Binary      = $0001; { Binary Mode (skip EOF check    }
  dcb_RtsDisable  = $0002; { Don’t assert RTS at init time  }
  dcb_Parity      = $0004; { Enable parity checking         }
  dcb_OutxCtsFlow = $0008; { CTS handshaking on output      }
  dcb_OutxDsrFlow = $0010; { DSR handshaking on output      }
  dcb_DtrDisable  = $0080; { Don’t assert DTR at init time  }
  dcb_OutX        = $0100; { Enable output X-ON/X-OFF       }
  dcb_InX         = $0200; { Enable input X-ON/X-OFF        }
  dcb_PeChar      = $0400; { Enable Parity Err Replacement  }
  dcb_Null        = $0800; { Enable Null stripping          }
  dcb_ChEvt       = $1000; { Enable Rx character event.     }
  dcb_Dtrflow     = $2000; { DTR handshake on input         }
  dcb_Rtsflow     = $4000; { RTS handshake on input         }
procedure TCommDevice.ConfigureDevice;
var RC: Integer;
begin
  RC := GetCommState(FDeviceId,FDCB);
  If RC = 0 then begin
    if FBaudRate > 0 then FDCB.BaudRate := FBaudRate;
    if FDataBits > 0 then FDCB.ByteSize := FDataBits;
    if FParity <> ByteNotSet then FDCB.Parity := FParity;
    if FStopBits <> ByteNotSet then
      FDCB.StopBits := FStopBits;
    With FDCB do begin
      { Set flow control }
      Flags := dcb_Binary;
      XOnLim := 0;

      XOffLim := 0;
      CtsTimeOut := 0;
      DsrTimeOut := 0;
      XOnChar := #0;
      XOffChar := #0;
      case FFlowControl of
        fcHardwareDSRDTR:
          begin
            Flags := Flags or dcb_OutxDsrFlow or dcb_Dtrflow;
            XOnLim := XFlowOnLimit;
            XOffLim := XFlowOffLimit;
            DsrTimeOut := FdsrTimeout;
           end;
        fcHardwareCTSRTS:
          begin
            Flags := Flags or dcb_OutxCtsFlow or dcb_Rtsflow;
            XOnLim := XFlowOnLimit;
            XOffLim := XFlowOffLimit;
            CtsTimeOut := FCtsTimeout;
          end;
        fcSoftware:
          begin
            Flags := Flags or dcb_InX or dcb_OutX;
            XOnLim := XFlowOnLimit;
            XOffLim := XFlowOffLimit;
            XOnChar := FXOnChar;
            XOffChar := FXOnChar;
          end;
      end;
      { Set parity checking options }
      if ParityCheck then Flags := flags or dcb_Parity;
      if ParityDoReplaceChar then begin
        Flags := flags or dcb_PeChar;
        FDCB.PeChar := ParityReplacementChar;
      end;
    end; { With FDCB do }
    RC := SetCommstate(FDCB);
    if RC = 0 then begin
      { Set up notification events }
      FNotifyWindow := AllocateHWnd(NotifyProcedure);
      SetCommEventMask(DeviceId,FEvents);
      EnableCommNotification(DeviceId, FNotifyWindow,
        ReceiveTrigger, TransmitTrigger);
    end else
      Raise Exception.CreateFmt(’Failed to configure ’+
        ’Device. SetCommstate ended with error %d.’,[RC]);
  end else
    Raise Exception.CreateFmt(’GetCommState ended with %d ’+
      ’when trying to configure Device.’,[RC]);
end;

➤ Listing 4

42 The Delphi Magazine Issue 19



fields of this structure as required
and call the SetCommState function
to update the values. Listing 4
shows the ConfigureDevice method
along with the declaration for the
TDCB structure.

To set the baud rate we change
the BaudRate field of the TDCB struc-
ture. As the field is only a WORD value
it cannot handle baud rates over
65535. To get round this, a conven-
tion is used by the driver to inter-
pret this value. If the high byte of
this field is $FF the low byte refers
to an entry in an internal table
which is used to set the actual baud
rate. If the high byte is not $FF then
the value itself will be used. Win-
dows has pre-defined constants
which should be used to set this
field (beginning with CBR_). For ex-
ample, CBR_128000 equates to $FF23.

To set the number of data bits
per SDU we change the ByteSize
field of the TDCB structure. This
should be between 5 and 8.

To set the number of parity bits
we change the Parity field in TDCB.

Windows has pre-defined con-
stants for this (NoParity, OddParity,
EvenParity, MarkParity, SpacePar-
ity). To enable parity checking the
dcb_Parity flag of the TDCB.flags
field needs to be set (in TCommDevice
this is done by default). If you wish
to replace the characters which
generated parity errors with a dif-
ferent character you will need to
set the dcb_PeChar bit of the
TDCB.flags field and set the peChar
of the TDCB structure to the value of
the replacement character.

To set the number of stop bits we
change the StopBits field in TDCB.
Windows has pre-defined con-
stants (OneStopBit, One5StopBits
and TwoStopBits) for these options.

Setting flow control is more com-
plicated as it needs a combination
of fields to be set correctly for it to
work. Table 4 shows how the TDCB
values should be set for the flow
control options. The examples pro-
vided assume that a flow control
will be activated when the buffer is
within 50 bytes of being full and

deactivated when the buffer is
within 500 bytes of becoming
empty and the driver should wait a
maximum of 300 ms for the flow
control protocol to indicate that it
is OK to transmit data.

DTR/DSR is implemented in
TCommDevice but is not used in the
demo application as these lines are
used for device control with mo-
dems. The case FFlowControl state-
ment in the ConfigureDevice
method sets these fields.

The dcb_Binary flag in the TDCB
structure, when set, indicates that
we are processing binary data.
This is always set in TCommDevice.

Table 5 lists the flags/fields in the
TDCB structure which are not used
by TCommDevice as their function
is either incompatible with the
function of the class or irrelevant.

So then, how do we configure the
device after it is open? The Config-
ureDevice method described above
applies all the parameters in one
go. After it has called SetCommState
the FDCB structure contains a copy
of all the parameters currently
used by the device driver. How-
ever, some properties can be
changed after the device has been
opened (BaudRate, DataBits, Parity
and StopBits). Listing 5 contains
the property access routine for the
DataBits property as an example. If
you look at this code you will see
that it first updates FDataBits with
the new value, which will be used
when the device is next opened. It
then checks to see if the device is
already open. If so, it updates the
FDCB structure and calls Set-
CommState to update the opera-
tional parameters. If successful the
device driver will start using this
updated value. If this call fails the
status of the FDCB structure is re-
stored and an exception is raised.

Initialising The Device
In the TCommDevice.Open method,
after calling ConfigureDevice the
private method InitialiseDevice is
called (see Listing 6), which uses
the EscapeCommFunction API. This
causes the device driver to carry
out the extended function (passed
as the second parameter) to the
device specified in the first pa-
rameter. We pass SETDTR to ensure

Field
Flow control type

None DTR/DSR CTS/RTS Software

dcb_DTrFlow 0 1 0 0

dcb_RtsFlow 0 0 1 0

dcb_InX 0 0 0 1

dcb_OutxCtsFlow 0 0 1 0

dcb_OutDsrFlow 0 1 0 0

dcb_OutX 0 0 0 1

XOnLim 0 50 50 50

XOffLim 0 500 500 500

CtsTimeout 0 0 300 0

DsrTimeout 0 300 0 0

XOnChar 0 0 0 17

XOffChar 0 0 0 19

➤ Table 4: Configuring flow control

RlsTimeout We use event handlers when the CD line changes state

dcb_RtsDisable This would stop the driver using the RTS signal

dcb_DtrDisable This would stop the driver using the DTR signal

dcb_NULL This would cause the driver to skip NULL characters

dcb_ChEvt Generates an EV_RXFLAG event if character EvtChar is read

EofChar Used to indicate the end of data if dcb_Binary is clear

EvtChar Character which will cause the EV_RXFLAG event if dcb_ChEvt is set

TxDelay Not used by Windows

➤ Table 5: Unused flags and fields

March 1997 The Delphi Magazine 43



that the DTR line is asserted. This
should have happened anyway
when the device was opened but
sometimes this does not occur.
After ensuring that the DTR line is
asserted the method then writes
out any initialisation string (it de-
faults to ATZ) using the WriteLn
method: this is covered later.

Table 6 lists the extended func-
tions applicable to serial ports.

From our hardware discussion
you will remember that the DTR
line will cause the modem to hang
up the connection if it goes low.
Since the EscapeCommFunction func-
tion accepts CLRDTR and SETDTR as
parameters we can use this to im-
plement a hardware driven hang-
up method. If you look at the code
on the disk you will see that Escape-
CommFunction is called twice with a
500ms delay to drop then re-assert
the DTR line. This is not to be
confused with the Hayes modem
command to force a hang up (ATH).
This is a brutal, hardware driven,
method which should not fail. If the
modem is not currently in com-
mand mode (not accepting AT com-
mands) it will not process an ATH
command, but all modems should
react when the DTR line drops.

Detecting Errors/Events
Before I describe how to read and
write data to the communication
device we’ll look at how to detect
errors. There are two situations
where errors may occur which
would be of interest to us. The first
is during an API call and for these
we just check the function’s return
value. The second is when errors
occur independently of our proc-
essing. Due to the asynchronous
nature of communications, errors
can occur at any time, regardless of
what our program is doing.

Let’s deal first with detecting
errors after API calls. If you review
the online help for the APIs listed
in Table 3 you will see that they all
return values to indicate if the func-
tion worked successfully. Some
functions, like OpenComm, will indi-
cate by the value returned the
cause of the error. However, other
functions, for example WriteComm,
notify that an error was encoun-
tered (in this case by returning the

procedure TCommDevice.InitialiseDevice;
begin
  EscapeCommFunction(FDeviceId,SETDTR); { Assert the DTR line }
  FTempOutputStoredBytes := 0;
  if InitString <> ’’ then
    WriteLn(InitString);
end;

➤ Listing 6

Function Meaning

CLRDTR Clears the DTR (data-terminal-ready) signal

CLRRTS Clears the RTS (request-to-send) signal

GETMAXCOM Returns the maximum COM port identifier supported by the system

SETDTR Sends the DTR (data-terminal-ready) signal

SETRTS Sends the RTS (request-to-send) signal

SETXOFF Causes transmission to act as if an XOFF character has been received

SETXON Causes transmission to act as if an XON character has been received

➤ Table 6

procedure TCommDevice.SetDataBits(Value: Byte);
var OldByteSize: Byte;
    RC: Integer;
begin
  if Value in [5..8] then begin
    FDataBits := Value;
    if DeviceOpen then begin
      OldByteSize := FDCB.ByteSize;
      FDCB.ByteSize := Value;
      RC := SetCommstate(FDCB);
      if RC <> 0 then begin
        FDCB.ByteSize := OldByteSize;
        Raise Exception.CreateFmt(’Failed to change Device data size. ’+
          ’SetCommstate ended with error %d.’,[RC]);
      end;
    end
 end;
end;

➤ Listing 5

const
  { GetCommError status flags }
  ce_RXOver   = $0001;   { Receive Queue overflow }
  ce_Overrun  = $0002;   { Receive Overrun Error }
  ce_RXParity = $0004;   { Receive Parity Error }
  ce_Frame    = $0008;   { Receive Framing error }
  ce_Break    = $0010;   { Break Detected }
  ce_CTSTO    = $0020;   { CTS Timeout }
  ce_DSRTO    = $0040;   { DSR Timeout }
  ce_RLSDTO   = $0080;   { RLSD Timeout }
  ce_TXFull   = $0100;   { TX Queue is full }
  ce_Mode     = $8000;   { Requested mode unsupported }
type
{ TCommStat structure }
  PComStat = ^TComStat;
  TComStat = record
    Flags: Byte;
    cbInQue: Word;       { count of characters in Rx Queue}
    cbOutQue: Word;      { count of characters in Tx Queue}
  end;
const
  { Flag definitions for the TComStat.Flags byte }
  com_CtsHold = $0001;   { Transmit is on CTS hold }
  com_DsrHold = $0002;   { Transmit is on DSR hold }
  com_RlsdHold = $0004;  { Transmit is on RLSD hold }
  com_XoffHold = $0008;  { Received handshake }
  com_XoffSent = $0010;  { Issued handshake }
  com_Eof = $0020;       { End of file character found }
  com_Txim = $0040;      { Character being transmitted }
var ComStat: TComStat;
    ErrorFlags: Integer;
BytesRead := ReadComm(DeviceId,@Buffer,BufferLen);
if BytesRead <= 0 then begin
  ErrorFlags := GetCommError(DeviceId,Comstat);
  if ErrorFlags <> 0 then ProcessError(ErrorFlags);
end;

➤ Listing 7

44 The Delphi Magazine Issue 19



negative of the number of bytes
written) but not the cause. In these
situations the GetCommError func-
tion is used to determine the cause
of the error. When an error occurs
Windows locks the device until
GetCommError is called.

If you look at Listing 7 you will
see an example of a call which
reads some data from the Comm de-
vice to a buffer, then checks for an
error: in which case BytesRead will
be negative. If 0 is returned we still
need to check for an error (as op-
posed to nothing to be read). It
calls GetCommError to determine the
cause of the error. GetCommError
has two purposes. Its return value
is an integer, which contains flags
indicating the cause of the last
error detected by the driver (de-
tailed in Listing 7). It also returns
the current status of the device
into the TComStat structure passed
as the second parameter. TCommstat
contains a Flags field which indi-
cates what the device driver is cur-
rently doing. It also has two fields
which show how many bytes are in
the driver’s input and output
queues. This last feature is used in
the property access routines for
the InputByteCount and OutputByte-
Count properties of TCommDevice.

As I stated before, the device
driver can detect errors at any
time. For example, hardware er-
rors detected by the UART chip will

be communicated to the device
driver. We can configure the device
to inform us when these events oc-
cur. As well as errors, we can also
be informed when the status of the
device changes (eg CD line changes
state) or an event of interest to us
has occurred (eg the output queue
has become empty).

During the discussion of the Con-
figurePort routine I conveniently
ignored the final part of that rou-
tine which sets up notification
events. We’ll discuss this now (re-
fer back to Listing 4). To do this we
need to do three things.

First, we need to allocate a win-
dow handle to which WM_COMMNOTIFY
messages will be posted by the de-
vice driver when events occur.
This is done by calling AllocateHWnd
and passing the TCommDevice.Noti-
fyProcedure method to process the
messages as they are generated.

Secondly, we indicate which
events we are interested in by call-
ing SetCommEventMask with the de-
vice ID returned when we opened
the device, along with an event
mask word containing the event
flags we are interested in. From the
code you can see it passes FEvents
to the function which was initial-
ised in the Create constructor.
Table 7 shows the flags which are
available. After this call the driver
will record the events allowing you
to detect if they have occurred.

Finally, we enable notification of
events by calling EnableCommNotifi-
cation, which expects four parame-
ters. The first two are the device ID
and the window handle to receive
the messages. The third is a thresh-
old value to inform you if there are
at least this number of characters
to be read from the driver buffer.
The fourth parameter is a thresh-
old value to indicate if the buffer
capacity drops below this value, to
prompt you to transmit more data.
We pass -1 for these values as we
use EV_RXCHAR to be informed when
data has arrived at the port and
EV_TXEMPTY to be informed when the
output queue becomes empty (see
the later sections on reading and
writing data). Also, the MSDN
describes situations where the
system can get flooded with
WM_COMMNOTIFY messages when
using the threshold values.

An Event Handler
When the Comm driver has detected
an event which we are interested in
it posts a WM_COMMNOTIFY message to
our window procedure. Each mes-
sage may represent more than one
event. The wParam parameter for
this message is the device ID. The
LoWord(lParam) parameter can con-
tain a combination of these flags:
➣ CN_EVENT: At least one of the en-

abled events (as in FEvents in
our case) has occurred.

➣ CN_RECEIVE: The input buffers
threshold is greater than that
supplied in the EnableCommNoti-
fication call.

➣ CN_TRANSMIT: The output buffer
contains fewer characters than
that supplied to the Enable-
CommNotification call.

Listing 8 shows a skeleton message
handler procedure to process the
notification message (see the disk
for the actual implementation). As
the LoWord(lParam) can contain a
combination of all three CN_ values
we test for each flag in turn. The
CN_RECEIVE could be used to trigger
the reading of data from the serial
port. The CN_TRANSMIT could be
used to indicate that more data
should be written to the port. The
most interesting part of this rou-
tine is the processing when a
CN_EVENT occurs.

Flag Value Meaning

EV_RXCHAR $0001 Set when any character is received into the receiving queue

EV_RXFLAG $0002 Set when the event character (TDCB.EvtChar) is received into
the receiving queue (not used as we are using dcb_Binary).

EV_TXEMPTY $0004 Set when the transmission queue becomes empty

EV_CTS $0008 Set when the CTS line changes state

EV_DSR $0010 Set when the DSR line changes state

EV_RLSD $0020 Set when the RLSD (CD) line changes state

EV_BREAK $0040 Set when a break is detected in transmission

EV_ERR $0080 Set when a frame, overrun or parity error has occurred

EV_RING $0100 Set when the modem detects the ring tone *

EV_CTSS $0400 Set to indicate the current state of the CTS signal *

EV_DSRS $0800 Set to indicate the current state of the DSR signal *

EV_RLSDS $1000 Set to indicate the current state of the RLSD (CD) signal *

EV_RINGTE $2000 Set to indicate ring trailing edge indicator *

* Not used, due to COMM.DRV not providing the correct status. Instead we determine
the state of these lines using a technique provided by Microsoft to circumvent the bug.

➤ Table 7

March 1997 The Delphi Magazine 45



When the CN_EVENT is processed
we call GetLastError to find out
which error flags have been gener-
ated (it may return 0 as events
don’t always equate to errors). A
call is then made to GetCommEvent-
Mask. This serves two purposes: it
returns the events which have
been triggered, which are stored in
the local variable EventFlags, and
also causes the driver to clear
these events, to allow them to be
generated again.

Comm Lines Status
There is a bug in the Windows
driver software which means that
you can get misleading information
for the status of the Comm lines if you
attempt to use the status flags in
Table 7. Microsoft has provided a
solution to this problem, which has
been used in TCommDevice to get the
correct status of the CTS, DSR, RI
and CD lines via their property ac-
cess routines (eg see GetCTSHigh).

The UART chip has a register
called the Modem Status Register
(Port 6) which contains the status
of the control lines. The driver soft-
ware keeps a copy of this register
called the MSR shadow in its inter-
nal buffers. You can get at this byte
by using the fact that the SetCom-
mEventMask function returns a
pointer to the event word for the
device. The MSR shadow register is
at an offset of 35 bytes from this
address. By testing the bits in this
byte we determine the actual
status of the lines. Do not change
its value! The property access rou-
tines pass FEvents to SetCommEvent-
Mask so no change is made to the
events we wish to process.

Writing Data
Writing data to the Comm device is
achieved by simply calling the
WriteComm function passing the
DeviceId, a pointer to the buffer
and the number of bytes to be writ-
ten. The function returns the num-
ber of bytes written. If there was an
error the result will be negative.

When deciding the functionality
of the write function it became ap-
parent that there were numerous
options available. One was to not
return control until all the bytes
have been accepted by the device

driver, another was to store all
writes in a linked list and write
them later. Note: the fact that the
device driver has accepted the
data does not mean that it has hit
the wire. It will (hopefully) be sent
in due course...

The method I chose was to write
as much as I could to the device
driver, storing any remaining bytes
in a temporary buffer, to be sent
later. As long as this action was
performed the method returns
True to indicate the data was ac-
cepted (I’ll describe what happens
to this temporary data shortly). If a
subsequent call is made to the
Write method it will wait for up to 5
seconds for the temporary buffer
to be written before processing the
buffer. If the temporary buffer is
not written after 5 seconds the
method returns False to indicate
that no data was written. That is,

the function will either accept the
whole buffer or nothing.

Now, what happened to the tem-
porary buffer stored away? As you
can see from Listing 9, if the routine
could not pass the whole buffer on
to the device driver it calls Store-
RemainderInTempBuffer which will
copy the bytes left into a holding
buffer. Now, in the previous sec-
tion we discussed notification of
events. One of the events we are
interested in is the EV_TXEMPTY. This
is sent when the driver’s output
queue becomes empty. Although
not shown in this article, you can
see from the code supplied on the
disk that the NotifyProcedure event
handler writes data from this tem-
porary buffer to the device driver.
This clears up any backlog to allow
the next write to occur.

A second write method provided
is WriteLn, for use when issuing

function TCommDevice.Write(Buff: PChar; BuffLen: Integer): Boolean;
var
  BytesWritten: Integer;
  Errors: Integer;
  Comstat: TComStat;
  StartTicks: LongInt;
begin
  if DeviceOpen then begin
    { If we are already waiting to send the last block,
      caller will have to call us again after receiving false }
    Result := False;
    StartTicks := GetTickCount;
    While FTempOutputStoredBytes <> 0 do begin
      Application.ProcessMessages;
      if GetTickCount - StartTicks > 5000 then
        Break;
    end;
    if FTempOutputStoredBytes = 0 then begin
      BytesWritten := WriteComm(DeviceId,Buff,BuffLen);
      if BytesWritten < 0 then begin
        Errors := GetCommError(DeviceId,ComStat);
        ProcessComError(Errors);
        BytesWritten := -BytesWritten;
        StoreRemainderInTempBuffer(Buff,BuffLen,BuffLen - BytesWritten);
      end else if BytesWritten = 0 then begin
        StoreRemainderInTempBuffer(Buff,BuffLen,BuffLen);
      end else if BytesWritten < BuffLen then begin
        StoreRemainderInTempBuffer(Buff,BuffLen,BuffLen - BytesWritten);
      end;
      Result := True;
    end;
  end else
    Raise Exception.Create(’Comm Device is not open.’);
end;

procedure TCommDevice.NotifyProcedure(var Message: TMessage);
var LastError: Word;
    EventFlags: Word;
begin
  With Message do
    if Msg = WM_COMMNOTIFY then begin
      if LoWord(LParam) and CN_EVENT = CN_RECEIVE then begin
        { ...Read data here and process }
      end;
      if LoWord(LParam) and CN_EVENT = CN_TRANSMIT then begin
        { ...Write any data which needs to be sent here }
      end;
      if LoWord(LParam) and CN_EVENT = CN_EVENT then begin
        LastError := GetCommError(DeviceId,nil);
        EventFlags := GetCommEventMask(DeviceId,FEvents);
        { We now have the events which occurred in EventFlags
          and the errors in LastError }
      end;
    end;
end;

➤ Below: Listing 9➤ Above: Listing 8

46 The Delphi Magazine Issue 19



procedure TCommDevice.Close;
begin
  if DeviceOpen then begin
    if FNotifyWindow <> 0 then begin
      EnableCommNotification(DeviceId,0,-1,-1);
      DeallocateHWnd(FNotifyWindow);
      FNotifyWindow := 0;
    end;
    if DeviceOpen then
      CloseComm(DeviceId);
    FDeviceId := DeviceNotOpen;
    FillChar(FDCB,sizeof(TDCB),0);
  end;
end;

➤ Listing 10

commands to a modem. It accepts
a string, adds a carriage return
(#13) then calls the Write method to
pass the data to the device driver.

Receiving Data
If you refer back to Listing 1 you will
see that there is no read method!
Also, this section is called receiv-
ing data rather than reading data.
This is intentional. I decided that
rather than have a read method to
allow you to attempt to read data
which may, or may not, be in the
input queue, all notification of data
received would be event driven.
So, all processing for the reading of
data is driven by the event notifica-
tion routine. We make use of the
EV_RXCHAR event flag to ensure we
get a message when any characters
arrive in the input queue.

If you refer to the NotifyPro-
cedure code on the disk, you will
see that, when it receives this
event, it repeatedly calls the Read-
Comm routine to read the current
input buffer then calls the OnData
event procedure (if it is assigned)
to pass this data on to the user
application. A disadvantage of this
approach is that you tend to get
these events quickly (ie every few
characters).

Closing And Destroying
The device is closed by calling the
TCommDevice.Close method. Listing
10 shows the Close method in
detail. After ensuring that the de-
vice is really open it cleans up then
closes the device. It initially calls
the EnableCommNotification func-
tion with a windows handle value
of 0 to stop the device driver from
sending any more notification mes-
sages. It then frees the window han-
dle. Once this initial cleanup has

been performed it then calls the
CloseComm API which will cause the
device driver to close the device
and make it available to other proc-
esses. At this point we can no
longer access the device so the
FDeviceId field is set to the con-
stant DeviceNotOpen. If we attempt
to call any of the methods an excep-
tion will be raised.

When the object is destroyed it
calls Close to close the device (if
open), then frees the memory allo-
cated for its read and write buffers.

Demo Application
A simple terminal type application
is included on the disk, SERDEMO,
which makes use of TCommDevice to
allow you to explore the details de-
scribed in this article. When you
first execute the program you are
presented with a window similar to
Figure 4 (without the Event de-
scriptions window). The first area
to explore is the Options menu. This
allows you to configure all the op-
erating parameters for the device
(eg Baud rate, parity, flow control
etc). Once you have configured
these options to your liking you
can use the File menu option to
open the device. When you do this
you should see that the pretty
lights in the Status of communica-
tion lines area change from grey

to a combination of green (on) and
red (off). While the device is open
these lights will show the status of
these lines. The Terminal commands
edit box allows you to type com-
mands which, when you press
Enter, will be sent to the modem.
Below this edit box is the most re-
cent commands issued, to allow
you to retrieve them to re-execute
them (the cursor keys, intercepted
when the edit box has focus, will
scroll through these commands).

If you look at the Actions menu
you will see there is an option to
Show events. Select this and a tex-
tual description of any events (ex-
cluding the data transmit/receive
events) is given to show that they
are being detected. The events
shown in the screen shot were gen-
erated by opening the device, pow-
ering off the modem then powering
it back on again. The final CD is now
online was generated when I
logged onto CompuServe. In fact,
CompuServe is strange in that, offi-
cially, you need to log onto it with
7 data bits, even parity and 1 stop
bit (7E1). After you have got past
the initial logon script you need to
switch over to 8 data bits, no parity
and 1 stop bit (8N1). However, it
just happens that 7E1 and 8N1 are
the same length. So, if you log onto
CompuServe with 8N1 you will be

March 1997 The Delphi Magazine 47



prompted to enter CIS, your User ID and Password
(although the screen will look garbaged). Then when
you get to the initial menu all will look fine. However, if
you log on with 7E1, the initial logon script will look fine,
then once you have logged on, the event window will
list numerous parity error events. This is because Com-
puServe has switched to 8N1 but the Comm device is
configured as 7E1. Therefore, for 50% of characters a
parity error will be generated. If you configure the
device to 8N1 you will see garbage during the logon
script phase, but you will not see parity errors gener-
ated. This is because, from a hardware viewpoint, 7E1
is acceptable when the device is configured to 8N1 as
the bit streams are the same length.

Conclusion
I hope this article has stirred your enthusiasm to begin
delving into the world of serial communications and
that the TCommDevice class proves a useful starting
point. There are, of course, good commercial comms
libraries about, but there are also occasions when
something simple and home-grown will fit the bill.
Should you then upgrade to something more sophisti-
cated, you will also have the benefit of a good under-
standing of what’s actually happening!

John Chaytor is a freelance programmer who lives and
works in Brighton, UK, and can be contacted via
CompuServe as 100265,3642

➤ Figure 4

48 The Delphi Magazine Issue 19


	System View
	Hardware View
	Data Conversion
	Hardware Detected Errors
	Baud Rate
	Flow Control
	Driver Configuration
	Software View: The TCommDevice Class
	Opening A Device
	Configuring The Device
	Initialising The Device
	Detecting Errors/Events
	An Event Handler
	Comm Lines Status
	Writing Data
	Receiving Data
	Closing And Destroying
	Demo Application
	Conclusion

